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A class of lower—upper approximate-factorization implicit weighted essentially
nonoscillatory (ENO) schemes for solving the three-dimensional incompressible
Navier—Stokes equations in a generalized coordinate system is presented. The algo-
rithm is based on the artificial compressibility formulation, and symmetric Gauss—
Seidel relaxation is used for computing steady-state solutions. Weighted essentially
nonoscillatory spatial operators are employed for inviscid fluxes and fourth-order
central differencing for viscous fluxes. Two viscous flow test problems, laminar en-
try flow through a 90 bent square duct and three-dimensional driven square cavity
flow, are presented to verify the numerical schemes. The use of the weighted ENO
spatial operator not only enhances the accuracy of solutions but also improves the
convergence rate for steady-state computation as compared with that using the ENO
counterpart. It is found that the present solutions compare well with experimental
data and other numerical resultse 1998 Academic Press

1. INTRODUCTION

The design and construction of the WENO (weighted ENO) schemes for hyperb
conservation laws are based on ENO (essentially nonoscillatory) schemes which were
introduced by Harteret al. [1] in the form of cell averages. Later Shu and Osher [2,3
devised a class of flux-based efficient ENO schemes. The main concept of ENO schi
is to use the “smoothest” stencil (in the asymptotic sense) among several candidat
approximate the fluxes at cell boundaries to a high-order accuracy and at the same
to avoid oscillations near discontinuities. ENO schemes are uniformly high-order accu
right up to the shock and are very robust to use. However, they also have certain drawb
as Jiang and Shu [4] have pointed out. One problem is that the freely adaptive stencil ¢
change even by a round-off perturbation near zeroes of the solution and its derivat
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IMPLICIT WEIGHTED ENO SCHEMES 465

This free adaptation of the stencil is also not necessary in regions where the soluti
smooth. The convergence rate for the implicit ENO scheme is generally less effici
Another problem is that ENO schemes are not effective on vector supercomputers be
the stencil-choosing step involves heavy usage of logical statements which perform pc
on such machines. The WENO schemes introduced betal [5] and extended by Jiang
and Shu [4] can overcome these drawbacks while keeping the robustness and high-
accuracy of ENO schemes. The concept of WENO schemes is the following: instea
approximating the numerical flux using only one of the candidate stencils, one us
convex combination of all the candidate stencils. Each of the candidate stencils is assi
a weight which determines the contribution of this stencil to the final approximation of
numerical flux. The weights are defined in such a way that in smooth regions the ste
approaches certain optimal weights to achieve a higher order of accuracy, while in rec
near discontinuities, the stencils which contain the discontinuities are assigned a ni
zero weight. Thus the essentially nonoscillatory property is achieved by emulating E
schemes around discontinuities and a higher order of accuracy is obtained by emul
upstream central schemes with the optimal weights away from the discontinuities.
efficient ENO and weighted ENO schemes have been extensively tested and applied
compressible Euler/Navier—Stokes equations.

The solution methodology for viscous incompressible flows is rather different from t
for compressible flows, due to the fact that there exists no time derivative in the contin
equation for incompressible flows. In order to apply compressible flow solution algorith
to incompressible flow problems, the continuity equation needs to be modified to col
with the momentum equation so that the whole system of equations can be put intc
same formulation and solved efficiently. To achieve this goal, artificial compressibi
may be introduced by adding the time derivative of pressure to the continuity equat
as was first proposed by Chorin [6]. The modified continuity equation, together with
unsteady momentum equations, yields a hyperbolic—parabolic-type time-dependent s\
of equations. Thus, fast implicit schemes developed for compressible flows, such a
approximate-factorization scheme by Beam and Warming [7], can be implemented. Vai
applications which evolved from this artificial compressibility concept have been repol
for obtaining steady-state solution [8—16]. Merkle and Athavale [17], Rogers and Kwak [
Rogerstal. [19], and Rosenfeldt al. [20] have reported successful computations using tl
pseudo-time-iteration approach for the time-dependent flow problems. The preconditio
methods for solving the incompressible flow problems were reviewed by Turkel [21]. Furt
developments of numerical methods for incompressible viscous flows can be found ir
work by Andersoret al. [22] and by Brileyet al. [23].

Inthis work, the WENO schemes of Jiang and Shu [4] are adopted to solve incompres
flow problems. An implicit code of WENO schemes is developed for the artificial col
pressibility formulation of the three-dimensional incompressible Navier—Stokes equati
The lower—upper symmetric Gauss—Seidel (LU-SGS) implicit algorithm [16] is adoptec
solve the steady-state flow problems. This algorithm is not only unconditionally stable
also completely vectorizable in any dimensions. We apply the resulting schemes to «
pute several standard laminar flow problems including the entry flow through be®@
square duct and a three-dimensional driven square cavity flow. It is found that the pre
solutions are in good agreement with available experimental results and other nume
results. Meanwhile, the convergence rate to a steady-state solution using implicit weig
ENO schemes is found to be much superior to that using the implicit ENO counterpar



466 YANG ET AL.

2. GOVERNING EQUATIONS

The Navier—Stokes equations in the integral conservation law form for an incompress
three-dimensional viscous flow with artificial compressibility can be written as

/1 1 /- -

whereV is the volume of an arbitrary control volumgjs the area of an arbitrary control
surface, the direction afSis outwardQ is the conservative variables, e (E— EU)T+
(F— Fv)f+ (G — G,)K is the flux vector. In Cartesian coordinates system, Eq. (1) can
expressed as

§+8(E—Eu)+3(F—Fu)+8(G—GU) _

0, @
at ax ay dz
with
p Bu Bv Bw
2
Q= u ’ E— u+p ’ E— 2vu ’ G = wu ’
v uv ve+ P wv
w uw vw w? + p
0 0 0
E,=Rel| 2% | F oRe!|% W] g —Ret|WxTU|
Uy + vy 2vy wy + v,
U, + wy vz + wy 2w,

where g is the artificial compressibility parameter and ReV,,L/u is the Reynolds
number. The Cartesian velocity componants, w are scaled with the freestream velocity
Vs and the Cartesian coordinatesy, z are normalized with the characteristic lendith
The nondimensional pressure is definedpas (P — P.,)/oV2, and the density and
dynamic viscosity. are assumed to be constant.

Conventionally, Eq. (2) is transformed into the generalized coordirtates ¢) as

@ JI(E—-E)) n a(F—-F,) n (G -Gy

=0, (3
ot 0& an 9
where
p BU BV
~ u ~ uU +&p £ uvVv +nyp
=h E=h F=h
Q v |’ vU +&p |’ vV +nyp |’
w wU +&;,p wV +n,p
BW
A uW+ & p
G=h ,
vW+¢yp

wW +¢&2p
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Ev = h[éXEv + é,.:va + SZGU]’ 'Ev = h[nXEv + nva + UZGv]v
G, =h[&E, + &yFy + 66,1,

U =&u+é&w + &uw, V = nxU + nyv + naw,

W = xu + fyv + ¢pw,
andh is the Jacobian of the coordinate transformation (the cell volume) given by
Xe Xp X

Ye Yo Y
Z: Zy L

h= = Xe¥nZy + XpYeZe + XcYeZy — XpYnZe — Xy YeZe — Xe Y Zy.

The Jacobians of the inviscid flux& F, G are needed for the flux-difference splitting
and for the implicit algorithm. Let the Jacobian matride$3, C (A = a%” B= a%’ C= g—%)
be represented by

0 ke B kyB k2
~ |k ®+ku Kk kzu
Ai = ky ke o O+ kg kv )
kp  kew kyw O +kw
whereA; =A, B, C fori =1, 2, 3, respectively, and
@ = kxu + kyv + kzw
kx = (Si)x» I(y = (Ei)ya kz = (%‘i)Za gi = (é:a HOYC) fori = 123
A similarity transform for the Jacobian matrix is introduced,
Ai = RiAR™, (5)
with
® 0 0 0
06 O 0
MN=10 06+c 0 | ©)
00 0 ©®-c

wherec is the scaled artificial speed of sound given by

c=/02+8. @)

The matrix of the right eigenvectors is given by

0 O —X4C A3C
Xo X1 U—Agky U+ Azk
R| — 2 1 4Rx 3Rx , (8)
Yo Y1 v—2Xgky v+ Aszky
2 Zn w— 4K, w+ Ask,
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and its inverse is given by

2(xqap+ Y183+ z1a1)  2(z302 — y103) 2(X103 — z10y) 2(y10i — Xx1dp)
R1— 1 | 20282+ o83 + 2281) 2(Y20s — Z202) 2(Z20h — Xo03)  2(Xo02 — Y20h)

T 2¢2 1 )\.Skx )\3ky )\.skz ’
1 AakKy Laky Aakz
©)
where
aX ay 0z . .
X| = ,Y1= ,Z1= , andgi1=n, ¢, oréfori =1, 2, and 3 respectivel
YT e T B T g pecivey
X ay 9z . .
Xo = , Vo= , o= , andg o =1¢, &, orpfori =1,2 and3 respectively
0812 0812 9812
A3 =0 4+, M=0O—-C
a; = kv — kyu, ay = kyw — kyv, az = kyu — kyw

di = kB + Ou, d = kyﬂ + Ouv, ds3 = k;8 + Ow.

3. NUMERICAL METHOD

3.1. Spatial Discretization

A semidiscrete finite volume method is used to solve Eqg. (3) to ensure that the final
verged solution is independent of the integration procedure and to avoid metric singul:
problems. The finite volume method is based on the local flux balance of each mesh
The semidiscrete form of Eq. (3) can be written as

Gle 1 - . . -
87? == _Vi,j,k{[(E —E)Slit12jk — [(E—=E)S]i—1/2,jk]}
1 . . .
v I({[(F —Fo)Si j+1/2k — [(F = Fo)Si j-1/2}
i
1

(G = G)SNi k112 — [(G = G)S]i jk-12]), (10)

ij.k

where(i, j, k) is the(i, j, k)th computational cell with volum¥; j «, andS s the area of
each control surface and the direction is outward. The spatial differencing of numer
fluxes adopts fifth-order accurate=£ 3) weighted ENO scheme (WENO3) [4] for the
inviscid convective fluxesE, F, G) and fourth-order central differencing for the viscou:
fluxes(E,, F,, G,).

By adopting WENO3 schemes, we split the physical fluxes (%)al;acally into positive
and negative parts as

FIQ =F Q) +F (Q), (11)

where 9F+/3Q >0 and 9F~/3Q < 0. There are several flux splitting methods can b
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chosen. In this paper, we use the local Lax—Friedrichs flux splitting method, i.e.,

A A 1 - .
FAQ = 5(FQ £ 1AQ), (12)
where|A| = diag(|A1], |A2], |23, |A4]) @ndAiq, Ao, A3, Agq are the local eigenvalues, O,

® + ¢, and® — c, respectively. For easy understanding, we first consider the one-dimensi
scalar conservation laws. For example,

ur + f(u)x =0. (13)
Letus discretize the space into uniformintervals of sizeand denote; = j Ax. Various

quantities ai; will be identified by the subscripit. The spatial operator of the WENO3
schemes which approximatesf (u), atx; will take the conservative form

1 -~ ~
i'-=—H(fj+1/2_ fi_12), (14)

wheref’j12andf;_,,, are the numerical fluxes. Designditg, ; , and {7 , , respectively
the numerical fluxes obtained from the positive and negative part$wf then we have

fiie= a2+ e (15)

Here we first describe the approximation of the numerical ff~q>$1/2 in the one-
dimensional scalar conservation law. The WENO3 numerical flux for the positive f
of f(u)is

.= w(Zerz f,+1+—f+)+wl( f,+l+—fj+ 2fﬁ+1>
( f++6 o éf;z> (16)
where
w?:L k=012

af +af +of’
0 = et IS)E df = IS af= (e +1S)E e=100
°~ 10 T I0 TP 0 ’
and
13 1
|sg=l_2(fj+_2_2fj+_1+fj+)2+Z(fjt2—4fjt1+3fj+)2
13 1
ISf = 5L =21 + fh)?+ 2(fiL = fLp)?

13
IS;_ = 1_2(f+ 2fj-:'1 J+2)2+ (3f+ 4f]il J+2)2
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Similarly, the WENO3 numerical flux for the negative partfaiu) is

12 =y (—é fi+ gf,—— + % fJ;l) + o] <2 f-+ gfj‘+1 - éfj_+2>
+wz_<161fj_+1_gfj_+2+§fj_+3>v (17)
where
wp % k=012

a5=3(6+|so—)*2, a—=3(6+|s;)*2, a;:i(eﬂs;)*z e=10"°
10 1710 10 ’
and

13 L 1. _ _
1S :1—2(fj_1—2fj + fj+1)2+z(fj_l—4fj +3f1)°

13 _ _ 1. . _
IS] = 1_2(fj —2f .+ fj+2)2+‘—1(fj — f12)?

_ 13, _ _ 1 _._ _ -
1S, = 1_2(fj+1_2fj+2+ fj+3)2+ Z(3fj+1_4fj+2+ fj+3)2-

Next we consider the system of three-dimensional incompressible Navier—Stokes €
tions; the numerical flux at a cell surfaoe+ 1/2 in directionm is usually approximated
in the local characteristic fields.

Now, we denote by (column vector) antl (row vector) thesth right and left eigenvec-
tors ofAmH/z (the average Jacobian &t.1/), respectively. Then the scalar WENO3
scheme can be applied to each of the characteristic fields, i.e.,

2

IEm+1/2,s = Za)k,SQk(ls : 'A:m+k727 B |s . 'A:m+k)a (18)
k=0

which gives the numerical flux in theth characteristic field. Herey s, k=0, 1, 2, are the
weights in thesth characteristic field,

Wk,s = a)k(IS : IEm—Za DRI IS : l’im+2)a (19)

whichis a nonlinear functiond is defined previously), armmgk are the stencils as in Egs. (16)
and (17). The numerical fluxes obtained in each characteristic field can then be proje
back to the physical space by

4
Fmi12 = Z Fmi1/2sls. (20)

s=1
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3.2. Time Discretization
The lower—upper (LU) factored implicit scheme which was developed by Jameson
Yoon [24] is unconditionally stable in any number of space dimensions. In the framew
of aproximate factorization implicit scheme, the flux vectors can be linearized by settir
EML = EN+ A"AQ + O(|AaQD)
Frt = F" 4+ B"AQ + O(IAQI?)
G™ = G"+C"AQ+ O(IAQI?)
EM = E" + ATAQ + O(|AQID)
F* = F1 1 B"AQ + O(||AQ|?)
Gl =G} + CIAQ + O(1AQ|?).

whereA, B, C, A,
cous fluxe€,, F,,
variables.

The inviscid Jacobians can be split according to the sign of the eigenvalues,

A =AY+ AT =RATRTHRATRL (21)

C, are the Jacobian matrices of inviscid flusesF, G and vis-

.B..
G , respectively, ande Qn+1 Q” is the increment of conservative

HereA;" is formed by the nonnegative part of the matrix andA;” by the nonpositive part.
An Euler implicit time discretization of Eq. (10) can be written as

Viik(QUk = QM) _

Al —{[(I~E - EU)S]PIll/Z,j.k [(E E)SIM "2k}

—{[F—F)SIM ok — [(F—FSIM 04}
—{lG =G hsre = [G=GOSITh 12} (22

wheren is the time level. An unfactored implicit scheme can be obtained by substituting
above relations into Eq. (22) and dropping terms of second and higher orders. This re
in the governing equation in diagonally dominant form

—A)Si11/2 ) kAQi ik — [AT = A)Si_1/2, | kAQi 1,k

+IA™ +A)Sli11/2kAQi 11k — [A™ +A)S]i 12 kAQi j
+[(B* - év)S]i,j+l/2,kAQi,j,k —[(B* - év)s]i,jfl/z,kAQi,jfl,k
+[B™ +B)SNi j412kAQi 11k — [(B™ +B,)Sli j_1/2xkAQ
+[(CT = Co)Sijur1/2AQi i — [(CT = C)S]ijk-1/2AQ1 jk-1
+1C +Co)S)ij k128G jks1 — [(C + CSi jke128Q0 k)"
= —{[(E—-E)Slis12jk — [(E—E)Sli_1/2 k)"
—{[(F = F)Sli.j+12k — [(F = F)S]i j—y/2u)"
—{[G = G)Si.jkrr2 — [(G = G)Si jk-1s2]}"
—RHS (23)

wherel is the identity matrix.
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The implicit viscous Jacobians are also considered here to enhance the convergenc
especially for high-Reynolds-number flows in which grid systems with high aspect re
near the walls are used to resolve the boundary layer.

In order to maximize the efficiency, Jacobian matrices of the flux vectors are app!
imately constructed to give diagonal dominande., A—, B+, B~, C*, andC~ are con-
structed so that the eigenvalues af*matrices are nonnegative and those ef ‘matrices
are nonpositive, i.e.,

1

Af = > [Ai £ o 1], (24)
with the spectral radius of Jacobians
pa, = ke maxAA)], (25)

wherex (A) represent eigenvalues of Jacobian mafibandx is a constant that is greater
than or equal to 1 to ensure the splitting of flux Jacobians diagonally dominant.

The unfactored implicit scheme, Eq. (23), produces a large block banded matrix th
very costly to invert and requires large amounts of storage. This difficulty can be sol
by adopting the LU factored implicit scheme. The lower—upper symmetric successive o
relaxation (LU-SSOR) scheme of Yoon and Jameson [25] has the advantages of LU fa
ization and SSOR relaxation. In this paper, we adopt the LU-SSOR implicit factorizat
scheme to solve the flow problems.

Equation (23) can be simplified if all the Jacobians that should be evaluated at the indic
cell faces are calculated at the local cell centers, and this can be achieved if two-point,
sided differences are used. In addition, if we assume that the adjacent cell faces o
diagonal are approximately equal, say idirection,

Si1/2jk = S-12jk =S =05 12k +S-1/2K (26)
and recognize that
AT —A" =p; (27)

and replace all viscous Jacobians with their spectral radius approximation

~ VS|
A, ~pi =—I, 28
PA, Vi (28)
then, using the above relations, the LU-SSOR scheme can be written as
[LD'U]I"AQ = RHY, (29)
where
Vi jk
L= —=1+{[(ra +20a,)S + (08 +208,)Ss + (e + 20¢,)Sk];

At
—[(AT + PAI,)i_l,j,kSi—l/ZJ-k + (B + pév)i,j—l.ks»i—l/zvk

+(EF+ P&, )i werSiik-12]}
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\V/r

D= Xt’kl + [(pa + ZPAI,)S| + (g + ZPBU)SJ + (pe + Zpév)SK}i,j,k
V. .

U= =1+ {[(oa +203,)S + (b5 +208,)S0 + (pe + 206,) 5],
+ (A" = pa)ias  Svvzin+ (B = p8,)1 1104 S iv1/2k

+(C - pél,)i,j,k+15i,1.,k+1/2]}~ >

The LU-SSOR implicit scheme reduces to the LU-SGS implicit algorithm [16] in tt
limit At — oco. Thus, Eqg. (30) reduces to

L = [(oa +204,)S + (05 +208,)Ss + (oc +20¢,)Sx];
- [(A+ + pAu)i—l,j,kS—l/Z,i,k + (éJr + PABl,)i,j_l,kSi,j—l/z,k
+(C 408, )i 1S iik-172]

D = [(0a +204,)S + (05 +208,)Ss + (P& + 20¢,)Sk]; |

U= [(pa +204,)S + (05 +208,)Ss + (pe + 20¢,)Sc], ;4
+[(A - pAv)i+1,j,kS+1/2,i~,k +(B - pév)i_j+1’ksi,j+1/2,k
+ (é_ - péu)i,j,k+1S‘~J,k+1/2]' (31)

It is interesting to note that the present implicit algorithm (LU-SGS) permits sca

diagonal inversion.
Equation (31) is solved in the following three steps:

Stepl: LAQ* = RHS
Step2: UAQ" = DAO* (32)
Step3: Q™! =Q"+ AQ".

The LU-SGS algorithm employs a series of corner-to-corner sweeps through the f
fields and uses the latest available data for the off-diagonal terms to solve Eq. (32).
algorithm is completely vectorizable ont j 4 k = constanioblique planes of sweep.

3.3. Boundary Conditions

The boundary conditions imposed on the solid surface are the no-slip conditions. A
normal pressure gradient on the wall is applied. In the far field, a locally one-dimensic
characteristic type of boundary condition is used. The procedures employed here are si
to those usually used for the compressible flows. The Riemann invariants for the pre
system of equations are now given by

1 1
R*=p+ éuﬁ + Slunc+ B Inun + 0], (33)

whereuy, is the component of the velocity hormal to the boundary. In all calculations, 1
above boundary conditions are treated explicitly.
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4. RESULTS AND DISCUSSION

Presented here are the results of two different three-dimensional laminar flow comg
tions. These are the flow through a3&nding square duct and lid-driven cavity flow.

4.1. Flow through a90° Bending Square Duct

Ducts with rectangular/square cross sections are very frequently used in many engi
ing applications, such as aircraft intakes, turbomachinery blade passages, diffusers
heat exchangers. A distinguished characteristic of the flow in ducts with strong curva
is the generation of streamwise vorticity caused by the centrifugal forces which ge
ate substantial secondary flow and redistribution of the streamwise velocity in the ra
direction.

The experiment of Humphrest al. [26], in which the flow through a strongly curved
90 square bend duct was measured, is selected as a test case in the present stuc
measurements were carried out at Reynolds numbet F89, based on the inflow bulk
velocity and the hydraulic diameter, with the corresponding Dean’s number3seg; i.e.,
the problem was nondimensionalized using the side of the square cross section a
unit length and the average inflow velocity as the unit velocity. In the present work, th
different grid systems with mesh sizes of 237 x 17,49 x 33x 33, and 73x 49x 49
with the same artificial compressibility parameges 1.0 were used to solve this problem.

The geometry and the grid system of 23.7 x 17 are shownin Fig. 1. The straight inflow
section before the bend was set to a length of 5.0 and the outflow section downstrea

FIG.1. The geometry and the grid systei2s x 17 x 17) of flow through a 90 bending square duct.
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Square Duct with 90° Bend: Re= 790 (49x33x33 grid points)
10’ /——————r————————————————

10" F
10°
10°
10"
10°
10
107
10°®
107
107
10-11.‘..l....l....l....l...
1000 2000 3000 4000
Iterations

L2-norm of residuals

TR RTTTT EERTTTY RERYTeT RRRT. EERRTTT RERTTTY EERTL/T ERETITY W MR,

LRALL R B B L SR RRRRLL BLELLL B

5000

(]

FIG.2. The convergence history of ENO and WENO schemes for the flow throughte@@ing square duct
at the grid systems of 49 33 x 33.

the bend was also set to a length of 5.0. The radius curvature of the inne¢ryatfi
the curved section was 1.8, while that of the outer wiaJ) was 2.8. A fully developed
inflow velocity profile is prescribed at the inlet boundary and the Neumann bound
conditions (zero normal derivatives for all velocity components) are imposed at the out
boundary.

The convergence history of the ENO2 schefne- 2) and the WENO schemg@ = 3)
for this problem at the grid system of 4933 x 33 is shown in Fig. 2. It can be seen tha
the rapid convergence rate and monotonous curve were obtained for the WENO3 sct
Meanwhile, the corresponding convergence rate of the ENO2 scheme [27] is very po
is clear to see the effectiveness in applying the WENOS3 scheme in this three-dimens
case.

For the grid independence consideration, three different grid systems>ol2% 17,

49 x 33 x 33, and 73x 49 x 49 are investigated. Figure 3 shows the comparison of col
puted results of the WENO3 scheme at those grid systems with the experimental de
Humphreyet al. [26]. The streamwise velocitgV,) profile is presented in this figure for
six different cross sections along the duct. The location of these cross flow planes is si
in Fig. 1. In Fig. 3, thex-axis is the normalized radial distance and thexis is in the
azimuthal direction. Except for the results of coarse grid system, the computed results
pare well with the experimental results, particularly at the first four streamwise static
However, some discrepancy is found between the numerical and experiment results
two downstream planes. This deviation also can be found for the other numerical calc
tions of Roger®t al. [19] and Rosenfel@t al. [20]. Nevertheless, the peaks of streamwis
velocity near the outside wall at those stations are very well captured.
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20f it e 2,0 =x
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FIG.3. Comparison of streamwise velocity,) profiles at different streamwise locations (midspan) on thre
different grids with the experimental results.

Figure 4 shows the comparison of computed results of ENO2 and WENO3 schem
the middle grid system (49 33 x 33) with the experimental data. It can be seen that eve
thougth the convergences rate of the ENO2 scheme is poor, the accuracy is as good
of the WENO3 scheme.

Figure 5 shows the cross-sectional velocity vector fields at the plathe-&°, 30°, 60°,
and 90. The figures show how a pair of secondary vortices are generated. The cer
of these vortices seen to move toward the inner wall betweef th80° station and the
6 = 60° position, and then tend to center again further downstream9q0°), and at the
same time a secondary pair of vortices near the outer corners is established. This a
gualitatively with the observations of the experiment of Humplaiegl. [26].

4.2. Driven Cavity Flow

The lid-driven cavity flow, a classic recirculating flow, is an idealization of many en\
ronmental, geophysical, and industrial flows. It is a typical benchmark problem for solv
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FIG. 4. Comparison of the computed streamwise velo¢hy) profiles of ENO and WENO schemes at
different streamwise locations (midspan) with the experimental results.

of the incompressible Navier—Stokes equations. Since the cavity flow problem in eithe
two- or three-dimensional case is an ideal configuration for studying complex flow phy:
in a simple geometry, this problem has been extensively studied for more than three de
and draws continuous attention.

This problem choice is prompted by numerous experimental observations of Koseff
Street [28—30] and Aidust al. [31]. Three-dimensional calculations have been performe
by Ku et al. [32], Guj and Stella [33], Jiangt al. [34], Fujimaet al. [35], and Ho and Lin
[36] for the spanwise aspect ratio (SAR)L.0, and by Freitast al. [37], Freitas and Street
[38], and Chianget al. [39] for SAR=3.0. For the code validation, numerical simulation
using the WENO3 scheme have been conducted first for the upper-lid-driven flow
cubic cavity (SAR=1.0) at three different Reynolds numbers,=R&00, 400 and 1000,
and then for the case of SAR3.0 over a wide range of Reynolds numbers from=RE0
to Re=3200.

The geometry and grid systems of 883 x 33 (SAR=1.0) is shown in Fig. 6. In
Fig. 7, the computed velocity profiles ofon the vertical centerline andon the horizontal
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FIG. 6.
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FIG. 7. The computed velocity profiles af on the vertical centerline andon the horizontal centerline of
the symmetry planéz = 0.5) at Re= 100, 400, and 1000 for the driven square cavity flow (SAR.0).

centerline of the symmetry plarig = 0.5) at Re= 100, 400, and 1000 are compared witt
the other calculations by Jiarg al. [34]. It is shown that our numerical results compar
very well with the results of Jianet al.

Figures 8 and 9 show the steady velocity vectors plots on three midplanes- (&b,
(b) y=0.5, and (c)x=0.5 for Re=400 and 1000, respectively. We can observe ¢
the symmetric planez(=0.5), in Figs. 8a and 9a that the secondary vortices appear
the two lower corners and the primary vortex moves toward the center of the cube a
Reynolds number increases. This phenomenon is similar to that in the two-dimensiona
driven square cavity, but there does not exist a secondary vortex near the left upper c«
Figures 8b and 8c illustrate a pair of primary contrarotating vortices near the upstr
wall and near the bottom wall, respectively. Meanwhile, another pair of secondary vort
appears near the upper corners on the pbare0.5. Those pairs of primary and sec-
ondary vortices strengthen with increasing Reynolds number and become more distin
at Re=1000, as shown in Figs. 9b and 9c. Those characteristics have also been obs
in other numerical studies [32—36].

The other test case is the lid-driven cavity flow for SAR.0. The geometry and grid
systems of 3% 33 x 91 are shown in Fig. 10. This flow problem was calculated for a seri
of Reynolds numbers on a fixed nonuniform grid system ok 33 x 91. Figure 11 shows
the convergence history of lid-driven cavity flow for different Reynolds numbers. We w
able to obtain converged solutions at Reynolds number up to 1200. For higher Reyr
numbers, attempts to obtain the converged solutions failed. For the Reynolds number al
1200 (i.e., Re= 1000, 1200, 1250, 1300, and 1500), the downstream secondary eddy (C
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size with iteration numbers are plotted in Fig. 12. Figure 12 shows the steady fixed [
for Reynolds numbers 1000 and 1200. For Reynolds humbers beyond 1250, the fluctu
of DSE becomes more distinctive when the Reynolds number is increasing. From Fig:
and 12, we can see that flow patterns remain steady up te R80. With increasing
Reynolds numbers, the flow unsteadiness becomes appreciable 488 approximately.
As Re takes on values larger than the critical Reynolds number, the Tagldlei@ike
(TGL) vortices appear.

Figure 13 shows the comparison of the steady flow separation length DSE of predictec
the experimental results of Aiduat al. [31]. It shows good agreement with the experiment:
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results. For the cases of Re larger than the critical Reynolds humber, the flow pattern
unsteady. It is difficult to compare quantitatively with experimental results. In Fig. 14,
try to compare the normalized mearandv velocity profiles at symmetry planeg £ 1.5)
for Re=3200. It shows that predicted results compare well with the experimental dat:
Koseff and Street [30].

Figures 15 and 16 show the velocity vector plots on three midplanes=4)5, (b)y =
0.5and (c)x = 0.5 for Re= 1000 and 3200, respectively. In Fig. 15, we can see that the fl
characteristic of Re- 1000 is still steady and similar to the case of SAR.O. The velocity
vectors also have a stationary pair of primary contrarotating vortices near the upst



FIG. 10. The geometry and grid systems of 833 x 91 of lid-driven cavity flow for SAR=3.0.

3D Lid-driven cavity flow (SAR=3.0, 33x33x91 grid points)
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FIG. 13. The comparison of the steady flow separation length DSE of the predicted and experimental res

wall for the y=0.5 plane and near the bottom wall for tlke= 0.5 plane and still have
a stationary pair of secondary vortices near the upper corners on thexpla@é. For
Re= 3200 (Fig. 16), the TGL vortices which were first predicted by Freitas. [37] were
observed. For the different iteration numbers, the structure of TGL vortices is different
is no longer stationary.

1.0

- O Koseff & Street (1984)
| ————— WENO3
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FIG. 14. The normalized mean-velocity component along vertical centerline amdelocity component
along horizontal centerline for Re3200 at symmetry planeg & 1.5).
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5. CONCLUSIONS

An efficient three-dimensional incompressible Navier—Stokes code based on the artif
compressibility formulation of Chorin has been developed using the implicit LU-SGS ¢
LU-SSOR time stepping and the weighted essentially nonoscillatory spatial operator.
plications to several three-dimensional steady viscous incompressible flow problems
been carried out to validate and illustrate the code. For the flow problems considered
flow through a 90 bending square duct and the lid-driven cavity flow, the LU-SGS implic
algorithm is employed. The use of a weighted ENO spatial operator for the inviscid flu
not only enhances the accuracy but also improves the convergence rate for steady
computation as compared with using the ENO counterpart. It is found that the solutior
the present algorithm compare well with experimental data and other numerical result
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